

Report No.:18230EC30089901 Page 1 of 50

EMC Report Test

Shenzhen Coolmay Technology Co., Ltd **Applicant**

Floor 5, building 5, Shenzhen software

industry base, No. 11, 13 and 15, Haitian 1st **Address**

Road, Binhai community, Yuehai street,

Nanshan District, Shenzhen

Product Name MT-i series HMI

Report Date May 18, 2023

Shenzhen Anbotek Compliance/Laboratory Limited

Page 2 of 50

Contents

1. Gener	al Information	- Yek	boje.	Ans	otek	
1.1.	al Information Client Information	Anbe	- Jodek	Anbora	71	
1.2	Description of Daviso (FLIT)					
1.3.	Auxiliary Equipment Used Durir Description of Test Mode	ng Test	Anto	, water	k Aupor	
1.4.	Description of Test Mode		otek Anbo		² dny ⁴ 94	6
1.5.	Test Summary	20. by.		pose, Vur		6
1.6.	Test Summary Test Equipment List	nbote	Anu	betek	Tupo, b	<u></u>
1.7	Description of Test Facility	lootek	Anbo.	Pr. Potek	Aupote,	1
1.8.	EMS Performance Criteria	h.	Anbore	Ann Mak	botok	12
2. Power	r Line Conducted Emission Test	Anv		Anbo.		13
2.1,	Test Standard and Limit	k Anbo		ek pupote	Anv	
2.2.	Test Setup	otek pob	Ole VIII		otek Anbu	13
2.3.	Test Procedure		upoten An		Notel Asteur	14
2.4.	Test Results	'up.	Votek	Aupore A		14
3. Asymr	Test Equipment List Description of Test Facility EMS Performance Criteria r Line Conducted Emission Test Test Standard and Limit Test Setup Test Procedure Test Results metric Mode Conducted Emission	n at Telecon	n Port	h poter	Anbe	17
3.1.	Test Standard and Limit Test Setup Test Procedure	upoter.	Anbe		Vupore	17
3.2.	Test Setup	le/	Anbore	- Prince	. aboten	17
3.3.	Test Procedure		⁴ 0da <u>n</u> 4an	Anb	أمورالي	18
3.4.	Test Results	ter And		otek Anbo	bn.	18
4. Radia	ted Emission Test (Below 1 GHz	<u>z)</u>	Upo, Vi.		poter An	19
4.1.	Test Procedure Test Results ted Emission Test (Below 1 GHz Test Standard and Limit Test Setup Test Procedure Test Results Test Results Test Standard and Limit Test Standard and Limit Test Standard and Limit Test Setup		poboter	Ant	, hotek	19
4.2.	Test Setup	Anv. Jok		Aupo,	br.	19
4.3.	Test Procedure	Anbo.	bu. Pastek	**************************************	Anv	20
4.4.	Test Results	aupote.	Anv	kbotek	Anbo.	20
5. Radia	ted Emission Test (Above 1GHz)	lek Yupo,		ek priboh	23
5.1.	Test Standard and Limit		100 × 1910,	Ope. And		23
5.2.	Test Setup	Pose, Vi		wootek An	, po	23
0.0.	rest Procedure				. 6.77.	
5.4.	Test Results	r otek	Anbore	Vu. Vek	hotek	24
6. Harmo	onic Current Test	bu. Hak		Anbe	otek	25
6.1.	Test Standard	Anbe		Amboro		25
6.2.	Test Setup	ek Anbol		10da,,	an Andr	25
6.3.	Test Procedure	1990	Doter Aup		otek Anb	25
6.4.	Test Results	·····	491000	upoi. Air		25
7. Voltag	je Fluctuations & Flicker Test	Anbore	by.	nepo _{fer}	Vup.	26
7.1.	Test Standard	Mopo _{ter}	Ann	. Apolek	Anbor	26
7.2.	Test Setup	- Abatek	Aupor	br.	unboten	26
7.3.	Test Standard Test Setup Test Procedure Test Results Test Standard Test Standard Test Standard Test Setup Test Procedure Test Results	76	k hopoter	Anu	h hotel	26
7.4.	Test Results	Anti		lek Vupor	b ₀	26

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:18230EC30089901 Page 3 of 50	
8. Electrostatic Discharge Immunity Test	27
	27
8.2 Test Setup	27
8.3. Test Procedure	27
8.3. Test Procedure	28
0. DE Field Strength Immunity Test	V 20
9.1. Test Specification	30
9.2 Test Setup	.30
9.3. Test Procedure	31
9.4. Test Results	31
10. Electrical Fast Transient/Burst Immunity Test	33
10.1 Test Specification	VII. 33
10.2. Test Setup	33
10.1. Test Opecification 10.2. Test Setup 10.3. Test Procedure 10.4. Test Results	34
10.4. Test Results	34
11 Surgo Immunity Toot	70
11.2 Test Setup	-100.36
11.3. Test Procedure	36
11.4. Test Results	36
11.4. Test Results 12. Injected Currents Susceptibility Test 12.1. Test Specification 12.2. Test Setup 12.3. Test Procedure 12.4. Test Results	38
12.1. Test Specification	38
12.2. Test Setup	38
12.3. Test Procedure	39
12.4. Test Results	39
13. Power Frequency Magnetic Field Immunity Test	41
13.1. Test Specification	41
13.2. Test Setup	41
13.3. Test Procedure	41
14. Voltage Dips and Interruptions Immunity Test	42
14.1. Test Specification	42
14.2 Test Setup	42
14.3. Test Procedure	42
	42
APPENDIX I TEST SETUP PHOTOGRAPH	43
APPENDIX II Photo documentation	anbore 47

Report No.:18230EC30089901 Page 4 of 50

TEST REPORT

Applicant Shenzhen Coolmay Technology Co., Ltd

Manufacturer Shenzhen Coolmay Technology Co., Ltd

Product Name MT-i series HMI

Test Model No. MT6070i

MT6037i, MT6043i, MT6050i, MT6050Ki, MT6070iD, MT6100i, MT6150i,

MT6037i-W, MT6043i-W, MT6050i-W, MT6050Ki-W, MT6070iD-W, Reference Model No.

MT6100i-W, MT6150i-W

Trade Mark Coolmay

Rating(s) 12-24VDC±10%, Up to 40mA, 90mA in operation, <5W

Test Standard(s) : EN 55032: 2015+A1:2020:

> EN IEC 61000-3-2: 2019+A1:2021; EN 61000-3-3: 2013+A1:2019+A2:2021;

EN 55035: 2017+A11:2020;

(IEC 61000-4-2; IEC 61000-4-3; IEC 61000-4-4;

IEC 61000-4-5; IEC 61000-4-6; IEC 61000-4-8; IEC 61000-4-11)

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with the EN 55032, EN IEC 61000-3-2, EN 61000-3-3, EN 55035 requirements.

This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	May 11, 2023
Date of Test:	May 11~May 18, 2023
	Anbotek Anbote Ant hotek Anbote
	We Zeng
Prepared By:	The state of the s
	(We Zeng)
	(ingkong)in
Approved & Authorized Signer:	Andoor Am
	(KingKong Jin)

Report No.:18230EC30089901 Page 5 of 50

1. General Information

1.1. Client Information

Applicant	: Shenzhen Coolmay Technology Co., Ltd
Address	Floor 5, building 5, Shenzhen software industry base, No. 11, 13 and 15, Haitian 1st Road, Binhai community, Yuehai street, Nanshan District, Shenzhen
Manufacturer	: Shenzhen Coolmay Technology Co., Ltd
Address	Floor 5, building 5, Shenzhen software industry base, No. 11, 13 and 15, Haitian 1st Road, Binhai community, Yuehai street, Nanshan District, Shenzhen
Factory	: ShenZhen Coolmay Technology Co., Ltd
Address	5th Floor, Building 3, Xinhaosheng Technology Park, Yonghe Road, Fuhai Street, Shenzhen, Guangdong Province, 518103

1.2. Description of Device (EUT)

Product Name	:	MT-i series HMI
Test Model No.	:	MT6070i
Reference Model No.	:	MT6037i, MT6043i, MT6050i, MT6050Ki, MT6070iD, MT6100i, MT6150i, MT6037i-W, MT6043i-W, MT6050i-W, MT6050Ki-W, MT6070iD-W, MT6100i-W, MT6150i-W (Note: All samples are the same except the model number & appearance, so we prepare "MT6070i" for test only.)
Trade Mark	:	Coolmay
Test Power Supply	:	DC 24V
Test Sample No.	:	1-1-1 Andrew Amboret Amboret Amboret Amboret
Product	:	N/A And tek aborek Andor k horek amborek And
Description		rek Anbor Anborek Anborek Anborek Anborek Anborek Anborek

Remark: (1) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

1.3. Auxiliary Equipment Used During Test

N/A lek models tribon	hotek Anboten	Aug stek vupo,
-----------------------	---------------	----------------

Report No.:18230EC30089901 Page 6 of 50

1.4. Description of Test Mode

	Pretest Mode	Description
N.	Mode 1	Anbores Anbores On Anbores Anbores Anbores

For Mode 1 Block Diagram of Test Setup

DC Mains	botek	Anb EUT	
		400	

1.5. Test Summary

Test Items	Test Mode	Status
Power Line Conducted Emission Test	Mode 1	tek Papore
Asymmetric Mode Conducted Emission at Telecom Port	botek Anbotek Ar	borek N Anbore
Radiated Emission Test (Below 1 GHz)	Mode 1	AnboteP Anb
Radiated Emission Test (Above 1GHz)	Anborek Anborek	PUCK, CK
Harmonic Current Test	ek Anbotek / Anbot	N Poster
Voltage Fluctuations & Flicker Test	potek Anbotok An	porek N Amborel
Electrostatic Discharge Immunity Test	Mode 1	Anbote P Anb
RF Field Strength Immunity Test	Mode 1	Ant Perk
Electrical Fast Transient/Burst Immunity Test	Mode 1	P
Surge Immunity Test	Mode 1	otek P Ambotek
Injected Currents Susceptibility Test	Mode 1	Anborel P Anbo
Power frequency Magnetic Field Immunity Test	Anborek Anborek	Aupolok M
Voltage Dips and Interruptions Immunity Test	k Anbotek / Anbote	k N Motek
P) Indicates "PASS". F) Indicates "Fail".	otek Anbotek Anb	ote, Augotek

- N) Indicates "Not applicable".

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:18230EC30089901 Page 7 of 50

1.6. Test Equipment List

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
An'	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	Oct. 23, 2022	1 Year
botek 2.	Three Phase V-type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	Jul. 05, 2022	1 Year
3.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Oct. 13, 2022	1 Year
4.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Oct. 22, 2022	1 Year
5	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

☐ Asymmetric Mode Conducted Emission at Telecom Port

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1. 1	ISN	Schwarzbeck	NTFM 8158	#172	Oct. 13, 2022	1 Year
2.	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	Oct. 13, 2022	1 Year
3.	RF Switching Unit	Compliance Direction	RSU-M2	38303	Oct. 22, 2022	1 Year
4. _b	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A
5.	Three Phase V-type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	Jul. 05, 2022	1 Year

□ Radiated Emission Test (Below 1 GHz)

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	Oct. 23, 2022	1 Year
2.	Pre-amplifier	SONOMA	310N	186860	Oct. 23, 2022	1 Year
3.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Oct. 23, 2022	1 Year
100tek 104.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A

Page 8 of 50

☐ Radiated Emission Test (Above 1GHz)

	32.50		M. Lock	1,0%	28 90.7	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	Oct. 23, 2022	1 Year
2.	Bilog Broadband Antenna	Schwarzbeck	VULB9163	VULB 9163-289	Oct. 23, 2022	1 Year
3.	Pre-amplifier	SONOMA	310N	186860	Oct. 23, 2022	1 Year
100tek 4.	Software Name EZ-EMC	Ferrari Technology	ANB-03A	N/A	N/A	N/A
5. Ant	EMI Preamplifier	SKET Electronic	LNPA-0118G- 45	SKET-PA-0 02	Oct. 13, 2022	1 Year
6.	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	Oct. 16, 2022	3 Year

☐ Harmonic Current and Flicker Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Anb	Programmable AC Power source	IVYTECH	APS-5005A	632734	Oct. 23, 2022	1 Year
2.	Harmonic and Flicker Analyzer	EMC-PARTNER	HMONICS 1000-1P	164	Oct. 23, 2022	1 Year
3.	Harmonics-1000	N/A	Ed.3.0+4.0	N.A	N/A	N/A

⊠ Electrostatic Discharge Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	ESD Simulators	emtest	ESD NX30.1	11936	Mar. 17, 2023	1 Year

Page 9 of 50

⊠ RF Field Strength Immunity Test

	927	- AP*	V. unO'	Dr.	10	- 0
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1,50	Signal Generator	Agilent	N5181A	MY5014310 7	Apr. 20, 2023	1 Year
2.	Power Meter	Agilent	E4417A	MY4510138 4	Apr. 20, 2023	1 Year
3.	Amplifier	Micotop	MPA-80-100 0-600	MPA211031 8	Apr. 20, 2023	1 Year
4.	Amplifier	Micotop	MPA-1000-6 000-100	MPA211032 7	Apr. 20, 2023	1 Year
5. ^{nb}	LogPerAntenna	Schwarzbeck	VULP 9118E	01012	N/A	N/A
6.	Microwave LogPer. Antenna	Schwarzbeck	STLP 9149	00788	N/A	orek N/A Moor
7.	Power Sensor	KEYSIGHT	E9323A	US40410647	Apr. 20, 2023	1 Year
8.	Power Sensor	KEYSIGHT	E9323A	MY5310000 7	Apr. 20, 2023	1 Year
9.	Electric field Probe	Narda S.T.S /PMM	EP 601	811ZX10351	Apr. 20, 2023	1 Year
10.	Software	EMtrace	EM 3	Die V Pier	N/A	N/A

⊠ Electrical Fast Transient/Burst Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
abliek	Surge Generator	TESEQ	NSG 3060	1480	Oct. 23, 2022	1 Year
2.	CDN	TESEQ	CDN 3061	1408	Oct. 23, 2022	1 Year
3.	EFT-Clamp	PRIMA	EFT-Clamp	I but	Oct. 13, 2022	1 Year

⊠ Surge Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Anbotek Anbot	Combined Wave Lightning Surge Simulator	3Ctest	CCS600	ES3771702	Jul. 05, 2022	1 Year
2.	Three Phase Power Coupling Network	3Ctest	SEPN69100 T	ES0801757	Jul. 05, 2022	1 Year
3.	Telecom port surge generator	PMIo ^{tek}	TW101	190411	Apr. 20, 2023	1 Year

Page 10 of 50

⊠ Injected Currents Susceptibility Test

	3 (2) 1 · ·		M. LaCo	10%	14 (2) 1	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1. ^{Anh}	C/S Conducted Immunity Test System	FRANKONIA	CIT-10	126A1196/20 12	Oct. 23, 2022	1 Year
2.	CDN Ant	FRANKONIA	CDN - M2+ M3	A2210178/20 12	Oct. 23, 2022	1 Year
3.	6dB Attenuator	FRANKONIA	DAM 26W	1172202	Oct. 23, 2022	1 Year
4.	CIT-10	FRANKONIA	Version1.1.7	N/A	N/A	N/A
5.	EM-Clamp	FRANKONIA	EMCL-20	18101728-01 03	Apr. 20, 2023	1 Year

☐ Power frequency Magnetic Field Immunity Test

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
Anbor	Power Frequency Magnetic Field Generator	EVERFINE	EMS61000-8 K	906002	Oct. 23, 2022	1 Year

☐ Voltage Dips and Interruptions Immunity Test

Ite	em	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
dn	otek	CYCLE SAG	PRIMA	DRP61011A	DD120/623/	Oct. 23. 2022	1 Year
j.,	200	Simulator	AND FRIIVIA	G.nbo	FK12040234	Oct. 23, 2022	Inteal

Report No.:18230EC30089901 Page 11 of 50

1.7. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 184111

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 184111.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.518128

1.8. EMS Performance Criteria

Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance, loss of function or change of operating state is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion B

During the application of the disturbance, degradation of performance is allowed. However, no unintended change of actual operating state or stored data is allowed to persist after the test.

After the test, the equipment shall continue to operate as intended without operator intervention; no degradation of performance or loss of function is allowed, below a performance level specified by the manufacturer, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

If the minimum performance level (or the permissible performance loss), or recovery time, is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A reboot or re-start operation is allowed.

Information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

Page 12 of 50

Report No.:18230EC30089901 Page 13 of 50

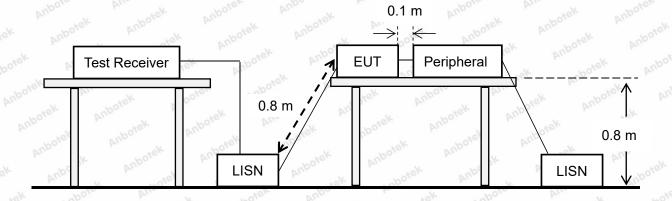
2. Power Line Conducted Emission Test

2.1. Test Standard and Limit

4	Test Standard:		EN 55032	V Ant	rotek o	Anbotek	Aupore.	Pur
	V 10'	D/.	- 14	0.	VVD.		~0,	565

☐ Limits for conducted emission at the AC mains power ports of Class A equipment

Fraguency (MIII=)	Limits (dBμV)					
Frequency (MHz)	Quasi-peak Level	Average Level				
0.15 ~ 0.50	79.0	66.0				
0.50 ~ 30.00	73.0 hotek	60.0				


□ Limits for conducted emission at the AC mains power ports of Class B equipment ■

Fraguency (MHz)	Limits (dBμV)			
Frequency (MHz)	Quasi-peak Level	Average Level		
0.15 ~ 0.50	66.0 ~ 56.0 *	56.0 ~ 46.0 *		
0.50 ~ 5.00	56.0	46.0		
5.00 ~ 30.00	60.0	arek Anbore 50.0 Anbor		

Remark:

- (1) The lower limit shall apply at the transition frequencies.
- (2) The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

2.2. Test Setup

Report No.:18230EC30089901 Page 14 of 50

2.3. Test Procedure

The table-top EUT is placed on a non-conductive table 0.8 m above the horizontal ground reference plane, and the back of the EUT is 0.4 m away from the vertical ground reference plane, and at least 0.8 m from any other metal surface or ground plane. The floor-standing EUT is placed on an insulating support 0.1 m above the horizontal ground reference plate, at least 0.8 m away from other metal objects.

Connect EUT to the power mains through an LISN. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the center into a bundle no longer than 0.4 m, so that its length is shortened to 1 m. All the peripherals are connecting to the other LISN.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

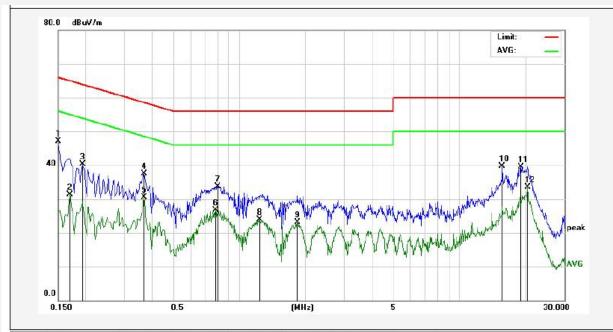
The identification of the frequency of highest disturbance with respect to the limit was found by investigating disturbances at a number of significant frequencies. The probable frequency of maximum disturbance had been found and that the associated cable and EUT configuration and mode of operation had been identified.

Set the test-receiver to quasi peak detect function and average detect function, and to measure the conducted emissions values.

2.4. Test Results

PASS

The test curves are shown in the following pages.


Report No.:18230EC30089901 Page 15 of 50

Power Line Conducted Test Data

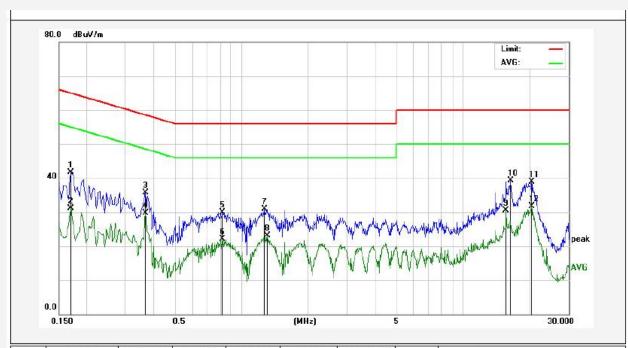
Test Site: 1# Shielded Room

Test Specification: DC 24V
Comment: Live Line

Temp.: 28℃ Hum.: 51%

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Remark
1	0.1500	37.28	9.82	47.10	65.99	-18.89	QP	
2	0.1700	21.48	9.83	31.31	54.96	-23.65	AVG	
3	0.1940	30.48	9.82	40.30	63.86	-23.56	QP	
4	0.3700	27.71	9.82	37.53	58.50	-20.97	QP	
5	0.3700	20.61	9.82	30.43	48.50	-18.07	AVG	
6	0.7820	16.75	9.87	26.62	46.00	-19.38	AVG	
7	0.7980	23.87	9.87	33.74	56.00	-22.26	QP	
8	1.2420	14.05	9.85	23.90	46.00	-22.10	AVG	
9	1.8340	13.19	9.85	23.04	46.00	-22.96	AVG	
10	15.6660	29.46	10.16	39.62	60.00	-20.38	QP	
11	19.0980	29.31	10.25	39.56	60.00	-20.44	QP	
12	20.4420	23.17	10.30	33.47	50.00	-16.53	AVG	

Note: Result = Reading + Factor Over Limit = Result - Limit


Report No.:18230EC30089901 Page 16 of 50

Power Line Conducted Test Data

Test Site: 1# Shielded Room

Test Specification: DC 24V
Comment: Neutral Line

Temp.: 28℃ Hum.: 51%

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	Detector	Remark
1	0.1700	31.90	9.83	41.73	64.96	-23.23	QP	
2	0.1700	21.18	9.83	31.01	54.96	-23.95	AVG	
3	0.3700	25.92	9.82	35.74	58.50	-22.76	QP	
4	0.3700	19.86	9.82	29.68	48.50	-18.82	AVG	
5	0.8260	20.12	9.87	29.99	56.00	-26.01	QP	
6	0.8260	12.15	9.87	22.02	46.00	-23.98	AVG	
7	1.2740	20.98	9.86	30.84	56.00	-25.16	QP	
8	1.3099	13.29	9.86	23.15	46.00	-22.85	AVG	
9	15.6700	20.27	10.16	30.43	50.00	-19.57	AVG	
10	16.4220	29.15	10.19	39.34	60.00	-20.66	QP	
11	20.4380	28.62	10.30	38.92	60.00	-21.08	QP	
12	20.4380	21.37	10.30	31.67	50.00	-18.33	AVG	

Note: Result = Reading + Factor Over Limit = Result - Limit

Report No.:18230EC30089901 Page 17 of 50

3. Asymmetric Mode Conducted Emission at Telecom Port

3.1. Test Standard and Limit

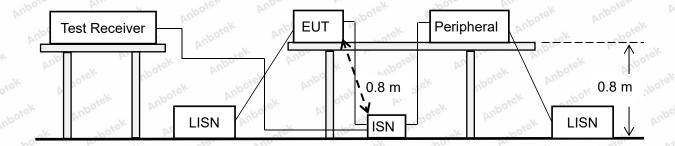
	Olle	100	200	Pro-	6.0	1-03	Ville	-0	16	
Y.	Test S	Standard	10	EN 55032	N. S.	Ann	Anbotek	Anbo	rek bu	1001
	- AZ	(O)	Der		11/67	- 70.07		- Mr.	(D) D/s	

☐ Limits for asymmetric mode conducted emissions of Class A equipment

Fraguency (MUz)	Limits (dBμV)						
Frequency (MHz)	Quasi-peak Level	Average Level					
0.15 ~ 0.50	97.0 ~ 87.0 *	87.0 ~ 74.0 *					
0.50 ~ 30.00	87.0	74.0 Add And And And And And And And And And					

Remark:

The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.


☐ Limits for asymmetric mode conducted emissions of Class B equipment

Fraguency (MHz)	Limits (dBμV)							
Frequency (MHz)	Quasi-peak Level	Average Level						
0.15 ~ 0.50	84.0 ~ 74.0 *	74.0 ~ 44.0 *						
0.50 ~ 30.00	74.0	64.0 Andrew						

Remark:

The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.2. Test Setup

Report No.:18230EC30089901 Page 18 of 50

3.3. Test Procedure

The table-top EUT is placed on a non-conductive table 0.8 m above the horizontal ground reference plane, and the back of the EUT is 0.4 m away from the vertical ground reference plane, and at least 0.8 m from any other metal surface or ground plane. The floor-standing EUT is placed on an insulating support 0.1 m above the horizontal ground reference plane, at least 0.8 m away from other metal objects.

Connect EUT to the power mains through an LISN. Where the mains cable supplied by the manufacturer is longer than 1 m, the excess should be folded at the center into a bundle no longer than 0.4 m, so that its length is shortened to 1 m. All the peripherals are connecting to the other LISN.

The EUT was connected to the peripheral equipment through the ISN and linked in normal condition.

Set the test-receiver to quasi peak detect function and average detect function, and to measure the asymmetric mode conducted emission values.

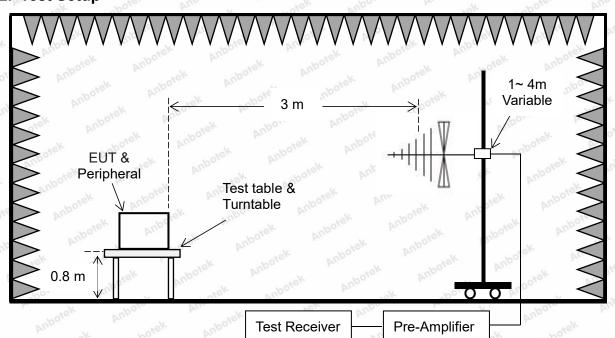
3.4. Test Results

Report No.:18230EC30089901 Page 19 of 50

4. Radiated Emission Test (Below 1 GHz)

4.1. Test Standard and Limit

_	D1.		-C.	~ ~ ~		14	1-01	D.1.	200	A 2
y.	Т	est Stan	dard		EN 55032	oler	Ann	Anbotek	Aupo. rek	br.
			MO.	Dr.		10,	000	. ak	No.	56.


☐ Limit for radiated emissions at frequencies up to 1 GHz for class A equipment

	Frequency (MHz)			Distanc (Meters		Field Strengths Limit (dBμV/m)		
Aupote.	30 ~ 230	Anboyel	k bu	, and 3	an abotek	Anbore.	50	Anborek
Aupo	230 ~ 1000	Pup.	otek v	Anbu 3k	Anbotek	Aupote	57	Anbo
Remark:	The lower limit sha	ll apply	at the tr	ansition fre	equencies.	Anbor	ok pose	k An

□ Limit for radiated emissions at frequencies up to 1 GHz for class B equipment

	Frequency (MHz)		Distance (Meters)			Field Strengths Limit (dBμV/m)		
ek k	30 ~ 230	An	Anbotak	Anbo.	Anbotek	40	K Ann	
otek	230 ~ 1000	abotek	AT 30 res	Y Vup	k Anborek	47 Anbox	*ek bis	
Rom	230 ~ 1000	annly at the t	ransition free	auencies	k Anbo	tek Anb	otek	

4.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Report No.:18230EC30089901 Page 20 of 50

4.3. Test Procedure

The table-top EUT is placed on a non-conductive table 0.8 m above the horizontal ground reference plane. The floor-standing EUT is placed on an insulating support 0.1 m above the horizontal ground reference plane.

The EUT was set 3 m away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 m to find out the maximum emission level.

The turntable can rotate 360 degree to determine the position of the maximum emission level.

The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

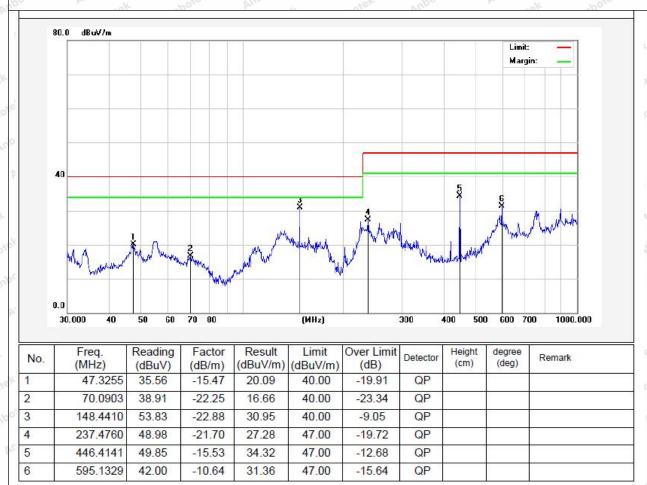
The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The bandwidth of the Receiver is set at 120 kHz

4.4. Test Results

PASS

The test curves are shown in the following pages.


Report No.:18230EC30089901 Page 21 of 50

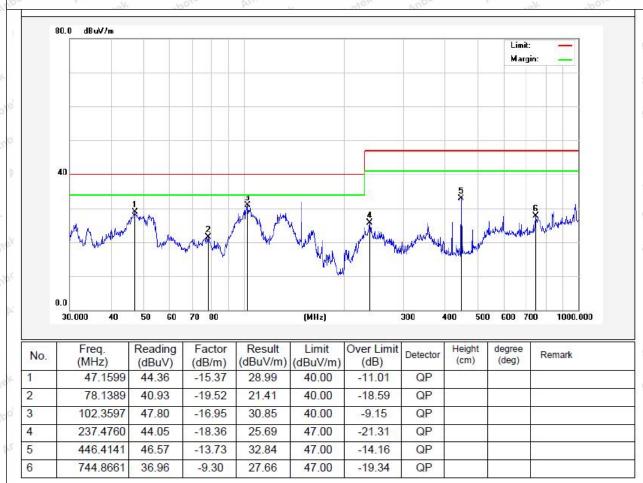
Test item: Radiation Test Polarization: Horizontal

Standard: (RE)EN 55032 Power Source: DC 24V

Frequency Range: 30MHz ~ 1000MHz Temp.($^{\circ}$)/Hum.($^{\circ}$ RH): 22.6($^{\circ}$)/54%RH

Distance: 3m

Note: Result= Reading + Factor Over Limit=Result-Limit


Report No.:18230EC30089901 Page 22 of 50

Test item: Radiation Test Polarization: Vertical

Standard: (RE)EN 55032 Power Source: DC 24V

Frequency Range: 30MHz ~ 1000MHz Temp.($^{\circ}$)/Hum.($^{\circ}$ RH): 22.6($^{\circ}$)/54%RH

Distance: 3m

Note: Result= Reading + Factor Over Limit=Result-Limit

Report No.:18230EC30089901 Page 23 of 50

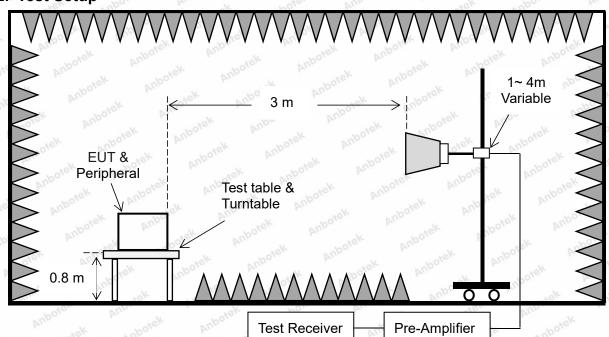
5. Radiated Emission Test (Above 1GHz)

5.1. Test Standard and Limit

0.77	-O	100		14	1-01	Diller	* G /	200
14	Test Standard	d	EN 55032	poter	And	Anborek	Aupo,	Vi.
	'd- Ys.	O. D.		46,	040	yo.	200.	bee

☐ Limit for radiated emissions at frequencies above 1 GHz for class A equipment

Frequency	Distance	Field Strengths Limit (dBμV/m)					
(MHz)	(Meters)	Peak	Average				
1000 ~ 3000	Anbore 3 And hotek	Anbore 76	56				
3000 ~ 6000	Anbore 3	Anbo 80 Anbo	60				


Remark: The lower limit shall apply at the transition frequencies.

☐ Limit for radiated emissions at frequencies above 1 GHz for class B equipment

	Frequency Distance				Field Strengths Limit (dBμV/m)				
	(MHz)		(Meters)			Peak		Av	erage
. No.	1000 ~ 3000	dek by	Nipo3 k	Anbore	V. Vur	70	Anbotel	Anb	50
potek	3000 ~ 6000	notek.	Ar3 otek	Ant	or lek	74	- Anb	yer p	54
DOJO P	Sout ~ 6000	hotek	- L L H01	%	inbotek.	Anboro	rek VIII	botek	Amboren 1

Remark: The lower limit shall apply at the transition frequencies.

5.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400–003–0500 www.anbotek.com.cn

Code: AB-EMC-02-c

Report No.:18230EC30089901 Page 24 of 50

5.3. Test Procedure

The table-top EUT is placed on a non-conductive table 0.8 m above the horizontal ground reference plane. The floor-standing EUT is placed on an insulating support 0.1 m above the horizontal ground reference plane.

The EUT was set 3 m away from the receiving antenna that was mounted on a non-conductive mast. The antenna can move up and down between 1 to 4 m to find out the maximum emission level.

The turntable can rotate 360 degree to determine the position of the maximum emission level.

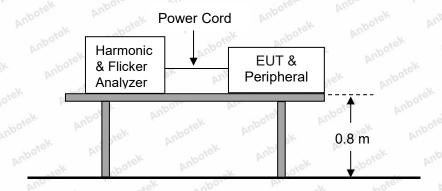
The initial testing identified the frequency that has the highest disturbance relative to the limit while operating the EUT in typical modes of operation and cable positions in a test setup representative of typical system configuration.

The identification of the frequency of highest emission with respect to the limit was found by investigating emissions at a number of significant frequencies. The probable frequency of maximum emission had been found and that the associated cable and EUT configuration and mode of operation had been identified.

The test receiver is set to peak and average detects function.

The bandwidth of the test receiver is set at 1MHz.

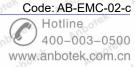
5.4. Test Results


Report No.:18230EC30089901 Page 25 of 50

6. Harmonic Current Test

6.1. Test Standard

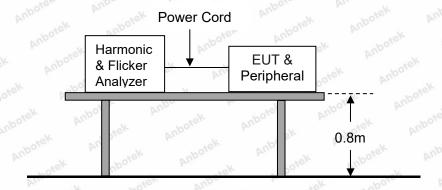
DD1 - 50-01 - 50-02	10/2	50	· 0/2
Test Standard:	EN IEC 61000-3-2	otek Anbotek	Anbo tek abot


6.2. Test Setup

6.3. Test Procedure

The table-top EUT is placed on the top of a wooden table 0.8 m above the ground (0.1 m for the floor-standing EUT) and operated to produce the maximum harmonic components under normal operating conditions for each successive harmonic component in turn. The correspondent test program of test instrument to measure the current harmonics emanated from EUT is chosen. The measure time shall be not less than the necessary for the EUT to be exercised.

6.4. Test Results


Report No.:18230EC30089901 Page 26 of 50

7. Voltage Fluctuations & Flicker Test

7.1. Test Standard

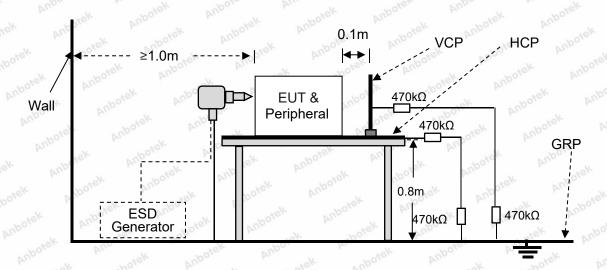
- 1 - 1		VUpo.	- Pro-	ak shore	Die
Test Standard	EN 61000-3-3	V. No.	otek Anbo	V. VIII	rek abo

7.2. Test Setup

7.3. Test Procedure

The table-top EUT is placed on the top of a wooden table 0.8 m above the ground (0.1 m for the floor-standing EUT) and operated to produce the most unfavorable sequence of voltage changes under normal conditions during the flicker measurement. The observation period for short-term flicker indicator is 10 minutes and the observation period for long-term flicker indicator is 2 hours.

7.4. Test Results


Report No.:18230EC30089901 Page 27 of 50

8. Electrostatic Discharge Immunity Test

8.1. Test Specification

1/4	Test Standard :	EN 55035
0	Basic standard :	IEC 61000-4-2: 2008
	Performance criteria:	Bek Anbore An botek Anborek Anborek
7/2	Test Level :	± 8kV (Air Discharge) ± 4kV (Contact Discharge)

8.2. Test Setup

8.3. Test Procedure

- a. In the case of air discharge testing, the climatic conditions shall be within the following ranges:
- Ambient temperature: 15°C to 35°C;
- Relative humidity: 30% to 60%;
- Atmospheric pressure: 86 kPa (860 mbar) to 106 kPa (1060 mbar)
- b. In the case of contact discharges, the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.
- c. In the case of painted surface covering a conducting substrate, the following procedure shall be adopted: - If the coating is not declared to be an insulating coating by the equipment manufacturer, then the pointed tip of the generator shall penetrate the coating so as to make contact with the conducting substrate. - Coating declared as insulating by the manufacturer shall only be submitted to the air discharge. - The contact discharge test shall not be applied to such surfaces.

Shenzhen Anbotek Compliance Laboratory Limited

Page 28 of 50

- d. In the case of air discharges, the round discharge tip of the discharge electrode shall be approached as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator (discharge electrode) shall be removed from the EUT. The generator is then retriggered for a new single discharge. This procedure shall be repeated until the discharges are completed. In the case of an air discharge test, the discharge switch, which is used for contact discharge, shall be closed.
- e. The test voltage shall be increased from the minimum to the selected test severity level, in order to determine any threshold of failure. The final test level should not exceed the product specification value in order to avoid damage to the equipment.
- f. The test shall be performed with both air discharge and contact discharge. The test shall be performed with single discharges. On each pre-selected point at least 10 single discharges (in the most sensitive polarity) shall be applied. For the time interval between successive single discharges an initial value of 1 s is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.
- g. Ensure that the applied charge on the EUT has been dis-charged before next ESD pulse.

8.4. Test Results

PASS

Please refer to the following page.

Page 29 of 50

Electrostatic Discharge Test Results

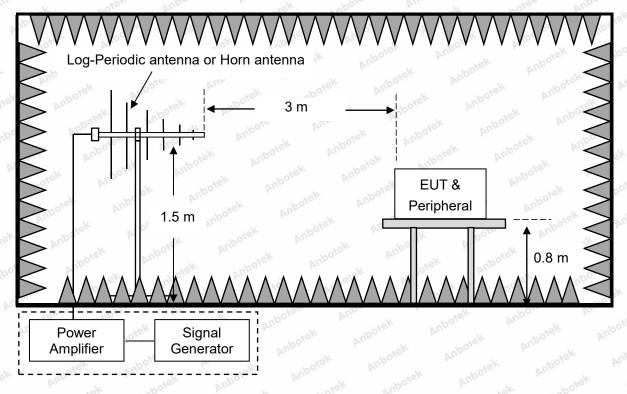
Test Result:	⊠ Pass □	Fail	Tempe	erature:	Anboten	24.1℃		
Power Supply:	DC 24V	Anbot	Humio	lity:	Anbo	49%	otek	Anbor
ak hotek Anb	ote. And	3K 201	otek	Aupo,	K Pri	hotek I	Iupole.	Visi
Anbotek Anbotek Lo	ocation	ontek Jotek	Anbotek Anbotek		nd ischarge Discharç	FC.	Result	otek Otek
Air discharge: ±2.0 kV, ±4	.0 kV, ±8.0 kV	Anbotek	54	Contact disc	charge: ±	4.0 kV	tek l	inp a upote
Slot Anborek	ek Anbotek	points	otek	Anbotek	A Anbot	⊠A	B	□ C
Screen	botek Anbote	points	nbotek	Anbotek	A Ant	⊠A	B®	C
COM Port	Anboren And	points	Anbote	k Aup	C tek	⊠A	□В	□с
USB Port	Anbotek 4	points	P.n.p.	potek (CAnbotek	⊠A	B	□С
Type-C Port	ek Anborek4	points	nek !	Aupotek (C Anbote	⊠A	B Spoot	□ C
Screw	potek Anbote	points	nbotek	Anbotek	A Anb	⊠A	A B	C
HCP	Anboten Anb.	points	Anbote	k Aupo	C potek	⊠A	□В	□С
VCP of the front	Anborek 4	points	Anb.	hotek (S Anbotek	⊠A	B	□С
VCP of the rear	k Anbotek 4	points	rek P	Anbotek (C Anbotel	⊠A	В	□С
VCP of the left	otek Anbotes	points	,botek	Anbotek	ok Anbe	⊠A	B	CM
VCP of the right	A 4	points	Anbolek	Aupo,	Crek	⊠A	B	□С
Anbotek Anbotek	Vupo, upolek	Anbotek	Pupo	notek An	Anbotek	Anbotek	ek An	o obotek
Note: N/A	ik vupotek	Anbore	ok A'	botek	Anborek	Anbo	rek	w. aupoi

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-EMC-02-c
Hotline
400-003-0500
www.anbotek.com.cn

Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com

Report No.:18230EC30089901 Page 30 of 50


9. RF Field Strength Immunity Test

9.1. Test Specification

Test Standard:	EN 55035	And And	Anborek Anbor Ar.
Basic standard:	IEC 61000-4-3: 2020	botek Anbo	Anborek Anbore Am
Performance criteria:	A Am motel	And And seek	A nbotek Anbote
Frequency Range:	⊠80MHz to 1000MHz	⊠ Spot frequencies	☐ Additional spot frequencies
Test level:	3 V/m	3 V/m	3 V/m
Modulation:	1kHz Sine Wave, 80%	, AM Modulation	ipo, Arrabotek Aupote
Frequency Step:	1 % of preceding frequency value		
Polarity of Antenna:	Horizontal and Vertical	tek nbotek	Ambore Am horek A
Test Distance:	3 m	Anbo sek abotek	Anbore K Anb
Antenna Height:	1.5 m	Anbo. Lak abol	ek Anborek Anb
Dwell Time:	at least 0.5s	Aupo, ak	ootek Anbotes Anbo

80 MHz, 120 MHz, 160 MHz, 230 MHz, 434 MHz, 460 MHz, 600 MHz, 863 MHz and 900 MHz.

9.2. Test Setup

Shenzhen Anbotek Compliance Laboratory Limited

9.3. Test Procedure

The procedure defined in this part requires the generation of electromagnetic fields within which the test sample is placed and its operation observed. To generate fields that are useful for simulation of actual (field) conditions may require significant antenna drive power and the resultant high field strength levels. To comply with local regulations and to prevent biological hazards to the testing personnel, it is recommended that these tests be carried out in a shielded enclosure or semi-anechoic chamber.

- a. The antenna is placed 3 m from the equipment. The required field strength is determined by placing the field strength meter(s) on top of or directly alongside the equipment under test and monitoring the field strength meter via a remote field strength indicator outside the enclosure while adjusting the continuous-wave to the antenna.
- b. The test shall normally be performed with the generating antenna facing each side of the EUT. When equipment can be used in different orientations (i.e. vertical or horizontal) all sides shall be exposed to the field during the test. When technically justified, some EUTs can be tested by exposing fewer faces to the generating antenna. In other cases, as determined for example by the type and size of EUT or the frequencies of test, more than four azimuths may need to be exposed.
- The polarization of the field generated by each antenna necessitates testing each selected side twice,
 once with the antenna positioned vertically and again with the antenna positioned horizontally.
- d. The step size of the frequency is set to 1%. The dwell time at each frequency shall not be less than the time necessary for the EUT to be exercised and to be able to respond. However, the dwell time should not exceed 5 s at each of the frequencies during the scan.

9.4. Test Results

PASS

Please refer to the following page.

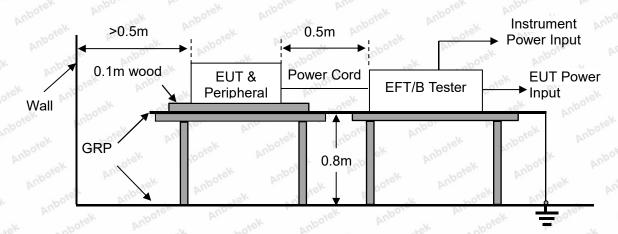
Page 31 of 50

Page 32 of 50

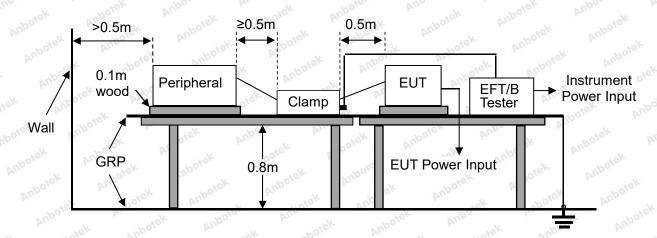
RF Field Strength Susceptibility Test Results

Test Result:	⊠ Pas	s 🗌 Fail	Temperature:	Anbotek	24.5℃		
Power Supply:	DC 24V	upotek Aupote	Humidity:	Anbote	50%	obotek	Anbo
tek Aupo,	Allotek	Anbores And	notek Anbotek	Aup	20/c	by spolek	P.V
Frequency Range	Antenna Polarity	R.F. Field Strength	Dwell Time	Azin	nuth	Result	telk
Anbotek Ar	botek Anbo	lek Aupoten	Anbotek	Anbote Fro	ont Anbo	rek pii	bojek
⊠ 80 MHz ~	Anborek H/V	boten And	ek anbotek	Re	ar	⊠ A	
1000 MHz	Anbotek	3 V/m	otek anbo	^A L€	eft		
poter Ann	ek Anbotek	Anbotek An	Anbotek Anbot	Rig	ght	Anbotek	V
Anbotek An	potek Anbotes	ak Anbotek	Anbotek Ant	Fro	11/10		
⊠ Spot	Anbotek Anbot	tek aboten	Anbotek	Re	ar Anti	⊠ A	
frequencies	H/V	750.	and Andorek	An Le	eft	☐ C	
otek Anbotek	Anbotek Anbotek	Anbotek Ant	Jotek Anbotes	Rig	ght	Anborrok	
Anbotek Anbot	otek Anbotek	Anbotek	Anbotek Anb	o ^{telk} Fro	ont	Ans	3/K
Additional	H/V	3 V/m	anbote.		ar ^{Anbo}	□ A □ B	
spot frequencies	Anbotek Ant	otek 3 V/IIIo	k Anborek	Anbore Le	eft	,,,,orek □ C	
k Anborek	Anbore.	ru,	otek Anbotek	Rig	ght		
Note: N/A	k Anborek	Anbotek	unbotek Anbote	otek An	Anbotek	Anbotek	D. B

Report No.:18230EC30089901 Page 33 of 50


10. Electrical Fast Transient/Burst Immunity Test

10.1. Test Specification


Test Standard:	EN 55035
Basic standard:	IEC 61000-4-4: 2012
Performance criteria:	B tek abotek Anbotek Anbotek Anbotek Anbotek
Test Level:	☐ 1 kV, AC mains power ports
	∅ 0.5 kV, DC network power ports
	□ 0.5 kV, Analogue/digital data ports

10.2. Test Setup

AC mains power ports and DC network power ports:

Analogue/digital data ports:

Report No.:18230EC30089901 Page 34 of 50

10.3. Test Procedure

The table-top EUT is placed on a table that is 0.8 m height, a ground reference plane is placed on the table, and uses 0.1 m insulation between the EUT and ground reference plane. The floor-standing EUT is placed on a ground reference plane and insulated from it by an insulating support with a thickness of 0.1 m. This reference ground plane shall project beyond the EUT by at least 0.1 m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5 m.

All cables to the EUT shall be placed on the insulation support 0.1 m above the ground reference plane. Cables not subject to electrical fast transients shall be routed as far as possible from the cable under test to minimize the coupling between the cables.

10.4. Test Results

PASS

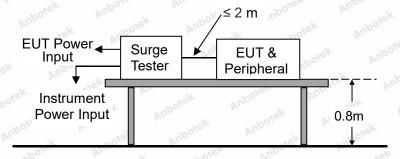
Please refer to the following page.

Page 35 of 50

Electrical Fast Transient/Burst Test Results

Test Result:	⊠ Pass □	Fail Temperat	ure: 24.	7 ℃
Power Supply:	DC 24V	Humidity:	55%	6 Antonolek Anbo
tek Aupo,	botek Anbote	Am	Anbotek Anbo.	ok abotek Ar
Ports	Polarity	Inject Time(s)	Test Voltage (kV)	Result
☐ AC mains power ports	tek Tipotek	120 s	1.0 kV	□А □В □С
□ DC network power ports	Anbotek ± Anbotek	120 s	0.5 kV	⊠A □B □C
☐ Analogue/digital data ports	Anbore And	120 s	0.5 kV	□А □В □С
Note: N/A	rek Anborek	Anborek Anbore	otek Anbotek	Anbotek Anbote

Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755-26066440 Fax:(86) 0755-26014772 Email:service@anbotek.com


Report No.:18230EC30089901 Page 36 of 50

11. Surge Immunity Test

11.1. Test Specification

Test Standard:		EN 55035
	Basic standard:	IEC 61000-4-5: 2014+A1:2017
	AC power port:	☐ 1 kV, Line to Line, Criterion B
3		☐ 2kV, Line to Ground, Criterion B
Test	DC network power port:	⊠ 0.5kV, Line to Reference Ground, Criterion B
level	Coaxial or shielded port:	□ 0.5kV, Shield to Ground, Criterion B
	Unshielded symmetrical port:	\square 1 kV and 4 kV, Lines to Ground , Primary protection, Criterion C
		☐ 1 kV, Lines to Ground , Non primary protection, Criterion C
Numb	per of surges	5 (for each combination of parameters)
Repetition rate		1 minute / time
Polar	ity:	Positive / Negative
Phase	e angle:	90°, 270° (Only AC mains power ports)

11.2. Test Setup

11.3. Test Procedure

Table-top EUT is placed on a table of 0.8 m heights above a metal ground reference plane. Floor standing EUT is placed on a ground reference plane and insulated from it by an insulating support with a thickness of 0.1 m. The length of the power cord between the EUT and the coupling/decoupling network is not more than 2 m, and the length of the interconnection line between the EUT and the coupling/decoupling network is not more than 2 m. The tests were done at repetition rate 1 per minute.

11.4. Test Results

PASS

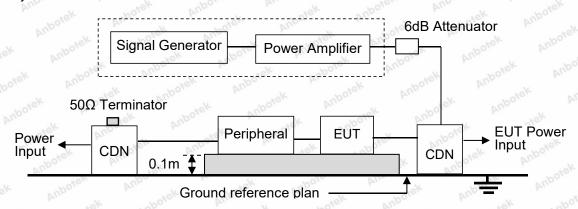
Please refer to the following page.

Report No.:18230EC30089901 Page 37 of 50

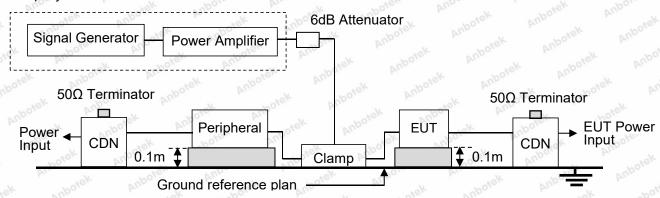
Surge Immunity Test Results

- AV	- 1/	Call 1	12/4		1:65	_ (VV	T.	- 1/-	to D
Test Result:	nboter	⊠ Pass	s [™] □ Fa	ail ^{ootek}	Temperatur	re:	Anbotek	22.5℃	otek A	no
Power Supply :	Anbote	DC 24V	botek	Aupore	Humidity:	yek.	Anbote	51.6%	onbotek	Anbo
lek Aupo,	ber -	otek	Anbore	Pur	stek N	upotek	Ant	o.	bolek	P.
Location	Pola	arity	Phase	Angle	Number Pulse	of Ambo	Pulse \	/oltage V)	Res	ult
☐ AC power po	rt (Wav	eform: 1.	2 us / 50	us (8 us	s / 20us))					
Ambotek L-N otek	Anbotek	k Anbo	□ 0° □ 180°	⊠ 90° □ 270°	Anboien 5	rek	0.5,	1kV	□ A □ E	в□с
ek L-INorek	Anb	otek	□ 0° □ 180°	□ 90° ⊠ 270°	pote ^k 5 pr	botek 'potek	0.5,	1kV	□ A □ E	B C
L-GND	otek b	Aupotek Valoriek	□ 0° □ 180°	⊠ 90° □ 270°	Anboren 5	Ant	0.5, 1	, 2kV	□ A □ E	3 🗆 C
Anbotek An	Aupotek	Anbot	□ 0° □ 180°	□ 90° ⊠ 270°	Anb 5 ck	e/r	0.5, 1	, 2kV	A 🗆 E	3 □ C
N-GND	Anbors	Jek VI.	□ 0° □ 180°		otek 5	ootek	0.5, 1	, 2kV	□ A □ E	3 □ C
oter IV Chip	k b	potek	□ 0° □ 180°	□ 90° ⊠ 270°	inbotek 5	Pupote Vipote	0.5, 1	, 2kV	□ A □ E	3 🗆 C
□ DC network p	ower po	rts (Wa	veform:	1.2 us / 5	50 us (8 us /	20us)) botek			
Line to Reference	hupoter.	- Ano	otek	anbotek	Anbot 5	1	0.5	kV 📈	\boxtimes A \square E	в□с
ground	Aupoles - Auc		· otek	work I Amborek A		0.5kV		kV	⊠A□E	в□с
☐ Analogue/dig	ital data	ports (V	Vaveform	n: 10 us	/ 700 us (5 u	ıs / 32	(0us)) :	ootek	Anbore	VUE
ore pri	k Ar	poter	Anb.	ek .	nbotek 5	Vupor	0.5,	1kV		в□С
Lines to ground	otek -Anboren		Aug		anbotek 5 Anb		0.5, 1kV		□A□B□C	
☐ Analogue/dig	ital data	ports (V	Vaveform	n: 10 us	/ 700 us (5 u	ıs / 32	(0us)) :	P//	tek b	nboton
Aupore b	abotek.	+ Pup	105	Anoc	50 ^{tel}	14	0.5, 1,	2, 4kV	_ A _ E	В С
Lines to ground	Ar.	ek b	hotel	bu ₀	tek 5,nb	otek	0.5, 1,	2, 4kV	AE	В 🗆 С
☐ Analogue/dig	ital data	ports (V	Vaveform	n: 1.2 us	/ 50 us (8 us	s / 20t	us)): Co	paxial or	shielded l	ines
Shield to ground	rek Air	anbotek .	Anbore	p P	botek 5	Anbo	0.5	kV	A E	в□С
	-otek .	Anbotek	Ant	lote.	Anothor 5	P.	100 ¹⁰¹ 0.5	kV	□ A □ E	в□с
Note: N/A	nbotek	Anbo	lek l	inposek	Anborek		Anbotek	k VUPO	potek	Anbotek

Report No.:18230EC30089901 Page 38 of 50


12. Injected Currents Susceptibility Test

12.1. Test Specification


VII 16	100	4 4010	ALL .	104	00
Test Standard:	EN 55035	atek anbotek	Anborek	hotek R.	Anboi
Basic standard:	IEC 61000-4-6: 2013				PUL
Performance criteria:	Abotek Anbotek	Anbotek Anbote	stek Anbotel	Anborek	1/2
Frequency range:	0.15MHz to 10MHz	10MHz to 30MHz	30MHz	to 80MHz	otek
Test level:	3V Manborek Anbores	3V to 1V	Anbore 1V	upore An	Anbore
Modulation:	AM 80%, 1kHz sine-wave	botek Anbotek	Anbore	Anbotek	Anb
Frequency Step:	1% of fundamental	Anbotek Anboten	tek Anbotek	Anbotek	\.

12.2. Test Setup

CDN injection:

Clamp injection:

Shenzhen Anbotek Compliance Laboratory Limited

Code: AB-EMC-02-c
Hotline
400-003-0500
www.anbotek.com.cn

Report No.:18230EC30089901 Page 39 of 50

12.3. Test Procedure

- a. The EUT and peripheral are placed on an insulating support of 0.1 m height above a ground reference plan. The distance between EUT and CDN is 0.1 m to 0.3 m. All cables exiting the EUT are supported at a height of at least 30 mm above the ground reference plan.
- b. The frequency range is swept from 150 kHz to 80MHz, with the signal 80% amplitude modulated with a 1 kHz sine wave. The rate of sweep did not exceed 1.5x 10-3 decade/s. The frequency range is swept incrementally. The step size was 1% of fundamental from 0.15MHz to 80MHz.
- c. The dwell time at each frequency isn't less than the time necessary for the EUT to be able to respond.

12.4. Test Results

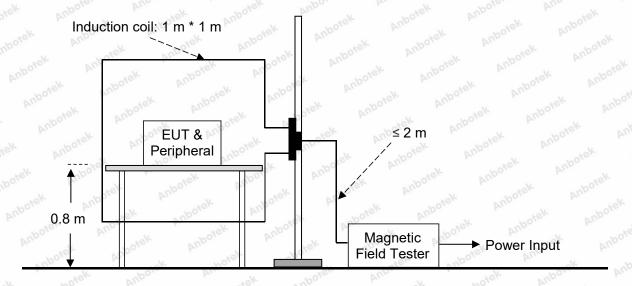
PASS

Please refer to the following page.

Page 40 of 50

Injected Currents Susceptibility Test Results

Test F	Result:	⊠ Pass □ Fail	Tempe	rature:	Anbotek	24.7℃		
Powe	r Supply:	DC 24V	Humid	ity:	Anbore	55%	abotek	Anbo
lek	Anbore An	otek Anbotes Anbo	-te/-	abotek	Anb	7/- 2,	hotek	D.T
_{lbo} te Fre	equency Range (MHz)	Injected Position	Strengt	h (Un-mod	ulated)	nbotek	Result	
Anbo	0.15 ~ 10	DC Mains	Anbor	3V	abotek	⊠A	B M] C
P.	10 ~ 30	DC Mains	ek Ani	3V to 1V	Anbotel	$\boxtimes A$	□в □	C
ek.	30 ~ 80	DC Mains	botek	Ant Vek	Anbo	⊠A	□В□	C po
poter	And botek	Inbotek Anbourtek	anbotek	Aupoter	ak A'	hotek.	Anborek	
Anbore	0.15 ~ 10	Anborek Anbo	Anbote	3V Mah	hotek	□ A	B	C
Ans	10 ~ 30	Anbotek Anbotek	Anb	3V to 1V	anbotek	□A	□В □] C
3/4	30 ~ 80	tek Anbotek Anbot	otek t	1Vek	Anbo	□ A N	□B □	C Ant
Note:	N/A	nbotek Anbotek An	Anbotek	Anbotek	ek Vu	botek	Anbotek	V


Report No.:18230EC30089901 Page 41 of 50

13. Power Frequency Magnetic Field Immunity Test

13.1. Test Specification

Test Standard:	EN 55035
Basic Standard	IEC 61000-4-8: 2009
Performance criteria	A otek Anbotek Anbotek Anbotek Anbotek Anbotek
Test level	1A/m Anbotek Anbotek Anbotek Anbotek Anbotek

13.2. Test Setup

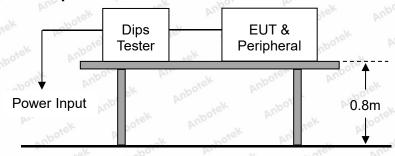
13.3. Test Procedure

Table-top EUT is placed on a table that is 0.8 m height. Floor standing EUT is placed on a ground reference plane and insulated from it by an insulating support with a thickness of 0.1 m.

The EUT is placed in the middle of an induction coil. The proximity method is used when the EUT does not fit into the standard inductive coil

13.4. Test Results

Not applicable.


Report No.:18230EC30089901 Page 42 of 50

14. Voltage Dips and Interruptions Immunity Test

14.1. Test Specification

Test Standard:	EN 55035
Basic standard:	IEC 61000-4-11: 2020
Test level:	□ 0%, 0.5 period, Criterion B
	☐ 70%, 25 periods for 50Hz, Criteria C
	□ 0%, 250 periods for 50Hz, Criteria C
	☐ 70%, 30 periods for 60Hz, Criteria C
3	□ 0%, 300 periods for 60Hz, Criteria C

14.2. Test Setup

14.3. Test Procedure

- a. Where the equipment has a rated voltage the following shall apply:
- If the voltage range does not exceed 20% of the lower voltage specified for the rated voltage range, a single voltage within that range may be specified as a basis for test level specification.
- In all other cases, the test procedure shall be applied for both the lowest and highest voltages declared in the voltage range.
- b. Test Conditions
- Select operated voltage and frequency of EUT Test of interval: 10 sec.
- Level and duration: Sequence of 3 dips/interrupts.
- Voltage rise (and fall) time: 1.5 μs.
- c. Changes to occur at 0 degree crossover point of the voltage waveform.

14.4. Test Results

Not applicable.

Code: AB-EMC-02-c
Hotline
400-003-0500
www.anbotek.com.cn

Report No.:18230EC30089901 Page 43 of 50

APPENDIX I -- TEST SETUP PHOTOGRAPH

Photo of Power Line Conducted Emission Test

Photo of Radiated Emission Test (Below 1 GHz)

Code: AB-EMC-02-c
Hotline
400-003-0500
www.anbotek.com.cn

Report No.:18230EC30089901 Page 44 of 50

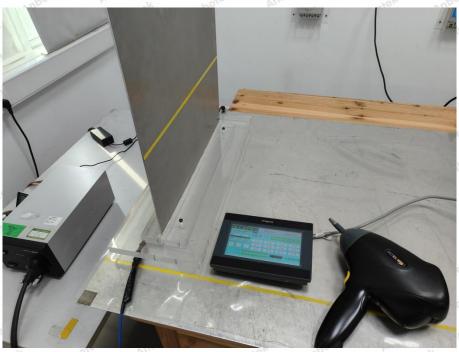
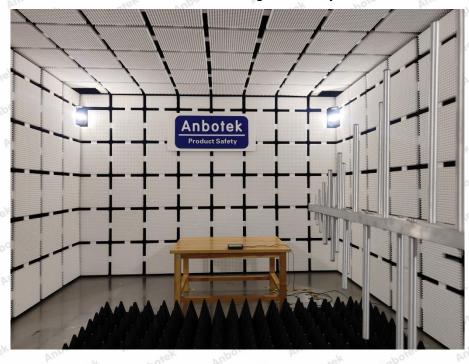
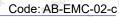




Photo of RF Field Strength Immunity Test

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com

Page 45 of 50

Photo of Electrical Fast Transient/Burst Immunity Test

Photo of Surge Immunity Test

Shenzhen Anbotek Compliance Laboratory Limited

Hotline 400-003-0500 www.anbotek.com.cn

Code: AB-EMC-02-c

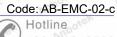
Page 46 of 50

Photo of Injected Currents Susceptibility Test

www.anbotek.com.cn

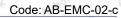
Code: AB-EMC-02-c

Page 47 of 50


APPENDIX II -- Photo documentation

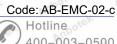
Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com


Page 48 of 50

Shenzhen Anbotek Compliance Laboratory Limited

Address:1/F.,Building D,Sogood Science and Technology Park, Sanwei Community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.
Tel:(86) 0755–26066440 Fax:(86) 0755–26014772 Email:service@anbotek.com



Page 49 of 50


Report No.:18230EC30089901 Page 50 of 50

CE Label

- The CE conformity marking must consist of the initials 'CE' taking the following form:
 If the CE marking is reduced or enlarged, the proportions given in the above graduated drawing must be respected.
- 2. The CE marking must have a height of at least 5 mm except where this is not possible on account of the nature of the apparatus.
- 3. The CE marking must be affixed to the product or to its data plate. Additionally it must be affixed to the packaging, if any, and to the accompanying documents.
- 4. The CE marking must be affixed visibly, legibly and indelibly.

 It must have the same height as the initials 'CE'.

rak Arhotek	End o	of Rep	ort	netek pobote
		16000		

